Our powertrains will increasingly turn towards low/zero impact emissions. The diversified powertrain portfolio of 2030 will lead to a significant reduction of greenhouse gas emissions in agreement with the targets of the Paris climate change conference.

- The 2030 powertrain portfolio will be more diversified than today, comprising advanced ICEs (gasoline, diesel, Natural Gas), HEVs, PHEVs, and BEVs. This composition of different powertrains will be gradually complemented by FCEVs.

- Customers’ decisions for a specific passenger car powertrain variant will be based on their individual needs and preferences concerning their usage patterns, e.g. urban commute vs. long distance travel.

- We actively work on reaching cost competitiveness of novel powertrains to promote the development towards zero emission transport.

Passenger cars, distribution trucks and buses in urban areas will achieve zero emissions.

- The automotive industry is developing the technologies to realise zero emission urban transport, i.e. BEVs, PHEVs, and FCEVs. For this we need to both increase battery capacities and reduce the overall powertrain costs. Smart vehicle technologies are important for HEV, PHEV, REEV to provide evidence of “zero emission” capability before entering the inner city (e.g. charging state of the battery).

- However, the availability of alternative-fuels infrastructure needs to increase dramatically. Therefore major investments in public (fast) charging infrastructure are necessary. Additionally, every customer has to be able to charge at home and/or at work. At these locations low-power charging is effective due to long idle times.

- From a technical point of view, this includes an extensive roll-out of charging points accompanied by upgrades to the nearby low voltage electricity grid connections, wherever necessary. In addition, the development of an adequate and effective regulatory framework, the introduction of uniform standards, and the promotion of further incentive measures will be required.
The internal combustion engine as a core component of PHEVs, HEVs, and advanced ICE vehicles maintains its relevance within a long-term perspective.

- In future with advanced internal combustion engines, pollutant emissions will reach zero impact level.
- Besides BEVs and FCEVs, PHEVs represent suitable ICE-equipped vehicle concepts for those urban areas with access restrictions. Zero emissions can be achieved in electric mode within city limits, while ICE can still be used elsewhere.
- Sustainable alternative fuels produced from renewable sources bear the potential for a further reduction of greenhouse gas emissions in a well-to-wheel frame. CNG / Renewable gases can also reduce direct vehicle greenhouse gas emissions towards 2030.

All types of sustainable propulsion will be required to use renewable electricity as their primary energy carrier.

- The primary application of green (renewable) energy within road transport is for charging BEVs and PHEVs. Vehicle grid integration must be considered by all actors.
- The surplus of generated renewable electricity can be converted into hydrogen for storage and propulsion in FCEVs. Generating synthetic fuels will allow green electricity to be used in ICE powertrains, while benefitting from existing energy/fuel infrastructures.
- The economic competitiveness of synthetic fuels generated from renewable energy sources will depend on CO2 emission pricing (for non-renewable energy carriers) or other incentives.
- Biofuels should complement the use of renewable fuels to some extent, if strict and verifiable sustainability criteria are being applied e.g. no monocultures and no conflict with food and feed crop cultivation.

Long-distance travels with passenger cars and long-haul commercial vehicles will primarily be dominated by PHEVs, HEVs, and advanced ICE propelled vehicles. Due to existing challenges, BEVs only represent a complementary long-distance option.

- The dominating powertrain technologies for 2030 long-distance vehicles are PHEVs, hybrids, and advanced ICE vehicles due to their high driving range. FCEVs fuelled with green hydrogen will be added to the long-distance powertrain options.
- BEVs will complement long distance vehicle transport combined with an appropriate roll-out of fast charging infrastructure. This limitation is mainly related to high battery costs and the required high investments for a large number of peak load capable fast charging stations to cope with high demand situations.
- Besides the roll-out of fast charging stations, further H2 refuelling stations will be necessary with an increasing number of FCEVs.
- Chemical energy carriers, primarily liquid fuels, will remain relevant for road transport in 2030 due to their high energy density. To proceed towards zero impact emissions these fuels need to become increasingly sustainable, e.g. by introducing synthetic fuels produced from renewable electricity.

EUCAR (European Council for Automotive R&D, www.eucar.be) is the association for collaborative research and innovation of the major automobile manufacturers in Europe. These manufacturers contribute to sustainable mobility and a competitive European industry, investing more than €50bn per year in research and development. The industry’s investments are leveraged by the collaborative work performed with support of the European Framework Programmes, currently Horizon 2020. The EUCAR Council comprises the heads of research and advanced development of the member companies.